Pyrrolizidine Alkaloids from Echium setosum and Echium vulgare

A. El-Shazly,* T. Sarg, A. Ateya, A. Abdel Aziz, and S. El-Dahmy
Department of Pharmacognosy, Faculty of Pharmacy Zagazig University, Zagazig, Egypt

L. Witte

Institut für Pharmazeutische Biologie, Technische Universität, Mendelssohnstrasse 1, D-38106 Braunschweig, Germany
M. Wink*

Institut für Pharmazeutische Biologie, Universität Heidelberg, Im Neuenheimer Feld 364, D-69120 Heidelberg, Germany
Received J une 28, 1995^{\circledR}
The major pyrrolizidine alkaloids (PAs) of Echium setosum and Echium vulgare were isolated and characterized as echimidine and a tigloyl isomer of echimidine. 3'-Acetylechimidine was identified in E. vulgare as a major new PA on the basis of MS and ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR. Sixteen further alkaloids were recorded by GLC-MS in the reduced alkaloid extracts.

The genus Echium, a member of the family Boraginaceae, is especially rich in pyrrolizidine alkaloids (PA). ${ }^{1,2}$ This class of alkaloids received considerable attention during the past decades not only because of their hepatotoxic, mutagenic, and carcinogenic activities, but al so for their antimitotic, antitumor, antispasmodic, and mydriatic properties. ${ }^{3}$ Echium setosum Vahl. is a small annual herb that grows naturally in Egypt, ${ }^{4}$ whereas Echium vulgareL. is common throughout most of Europe. Pyrrolizidine alkaloids have not been previously documented in E. setosum. We report here the results of our investigation of E. setosum, as well as a re-examination of E. vulgare L. The latter species should contain heliosupine, ${ }^{5}$ asperumine, ${ }^{6}$ and on the basis of TLC and MS-echinatine and acetylheliosupine (or their isomers). ${ }^{7}$ Our samples of E. vulgare and E. setosum showed echimidine as a major component as well as 3'-acetylechimidine (a new PA). In addition, we have recorded 7-angel oylretronecine, 9-angeloylretronecine, 7-tigloylretronecine, and 9-tigloylretronecine, which have not been reported before for these species.

Results and Discussion

Preparative TLC of the total alkaloidal extracts of E. setosum and E. vulgare, which had been reduced with Zn dust (to convert the alkaloid N -oxides into free bases) prior to isolation, afforded compound 1 as the main alkaloid. The structure was established by MS and ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}-N M R$ spectroscopy. Alkaloid $\mathbf{1}$ was obtained as an oil $[\alpha]$ D $=8^{\circ}$ (EtOH; c 0.1); its molecular ion was established as m/ z 397 by GLC-EIMS, corresponding to $\mathrm{C}_{20} \mathrm{H}_{31} \mathrm{NO}_{7}$. In ${ }^{1} \mathrm{H}$ NMR, the chemical shifts of the necine proton signals are in close agreement with the values reported for other acyclic diester alkaloids with the retronecine skeleton. ${ }^{8,9}{ }^{13} \mathrm{C}$ NMR exhibited signals at $\delta 132.89$ and 128.59, indicating a double bond between C-1 and C-2. The signals at $\delta 75.98$ (C-8), 73.66 (C-7), and 34.51 (C-6) signify the presence of a retronecine diester. ${ }^{10,11}$ The physical and spectral data of this

[^0]alkaloid are consistent with those reported for echimidine. ${ }^{11}$

A new alkaloid, 2, was obtained as an oil and its molecular ion determined as $\mathrm{m} / \mathrm{z} 439$ (corresponding to $\mathrm{C}_{22} \mathrm{H}_{33} \mathrm{NO}_{8}$) by EIMS. Alkaloid 2 seems to be a derivative of $\mathbf{1}$, and the difference in molecular ions can be explained by $\mathrm{CH}_{3} \mathrm{C}=\mathrm{O}$. ${ }^{1} \mathrm{H}$ NMR of 2 showed similar signals as echimidine (1) except for the appearance of a singlet at $\delta 1.95$ for an acetyl group. The presence of this acetyl group was confirmed by the downfield shift of the $\mathrm{H}-3^{\prime}$ to $\delta 5.44$ and $\mathrm{H}-4^{\prime}$ to $\delta 1.37$. ${ }^{13} \mathrm{C}$ NMR also corroborated this assumption: extra signals appear at $\delta 166.75$ (for $\mathrm{C}=\mathrm{O}$) and $\delta 20.96$ (for the methyl group of the acetyl moiety). Thus, 2 was identified as 3'acetylechimidine, which has not been described before.

The combination of capillary GLC and MS is the method of choice for the separation and identification of complex pyrrolizidine alkaloid mixtures. Retention index RI data, molecular weight $\left[\mathrm{M}^{+}\right.$], and group-specific MS fragmentations provide sufficient information for an unequivocal identification of most PAs, which are present as trace components, or of geometrical isomers. ${ }^{12-18}$ Thirteen PAs were detected in the reduced alkaloidal extract of E . setosum and 18 in E . vulgare (Tables 1 and 2). The major alkaloid in both extracts was identified as echimidine (1) (see above), while retronecine (3), 7-angeloylretronecine (4), 9-angeloylretronecine (5), 7-tigloyl retronecine (6), 9-senecioylretronecine (7), 9-tigloylretronecine (8), and echihumiline (9) were unambiguously identified by their specific RIs and MS. Alkaloids 10-19 were only tentatively identified, inasmuch as amounts were too limited for a thorough spectroscopic analysis.

Alkaloids $\mathbf{1 0}$ and $\mathbf{1 1}$ showed a molecular ion at m / z 239 corresponding to $\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{NO}_{3}$. The MS of $\mathbf{1 0}$ exhibited significant ions at $\mathrm{m} / \mathrm{z} 137,124,111,106$, and 80 (base peak); these fragments are characteristic for 1,2unsaturated necines with a monoester at C-7. ${ }^{18,} 20,21$ The fragment ion at $\mathrm{m} / \mathrm{z} 137$ is probably due to loss of the acid attached at $\mathrm{C}-7\left(\mathrm{M}-\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}_{2}\right)$. The fragments $\mathrm{m} / \mathrm{z} 85$ and 57 indicated that this acid is saturated and has two mass units more than angelic acid (or its isomers tiglic or senecic acid). In analogy to the patterns observed in other alkaloids we assume that it

Table 1. GLC-MS Data of Pyrrolizidine Alkaloids of E. setosum and E. vulgare

alkaloid	RI	formula	M ${ }^{+}$	characteristic ions (relative abundance, \%)	ref
1, echimidine	2560	$\mathrm{C}_{20} \mathrm{H}_{31} \mathrm{NO}_{7}$	397 (0.1)	382 (0.1), 352 (0.1), 297 (2), 221 (21), 220 (100), 219 (5), $138(5), 137(6), 136$ (48), 121 (26), $120(75), 119$ (30), $106(5), 94(30), 93$ (61), 83 (39), 80 (10), 59 (10), $55(25), 43$ (18)	19
2, 3'-acetylechimidine ${ }^{\text {a }}$	2640	$\mathrm{C}_{22} \mathrm{H}_{33} \mathrm{NO}_{8}$	439 (0.1)	$\begin{aligned} & 424(0.1), 322(1.3), 238(1.6), 221(25.3), 220(100), \\ & 219(3.3), 18(4.5), 137(5.8), 136(48.5), 121(8), \\ & 120(61), 119(28), 106(6.4), 94(23.6), 93(45.9), \\ & 83 \text { (13.8), } 59 \text { (10.6), } 55(12.5) \end{aligned}$	
3, retronecine ${ }^{\text {a }}$	1432	$\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{NO}_{2}$	155 (26)	$\begin{array}{r} 138(2), 137(2), 111(60), 106(4), 94(20), 93(8), \\ 82(6), 81 \text { (12), } 80 \text { (100), } 68 \text { (15), } 53 \text { (8), } 41 \text { (10) } \end{array}$	12, 21
4, 7-angel oylretronecine ${ }^{\text {a }}$	1787	$\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{NO}_{3}$	237 (2)	$\begin{aligned} & 219(3), 204(0.5), 191(1), 154(2), 138(5), 137(23), \\ & 136(18), 124(23), 111(38), 106(40), 94(20), 93(6), \\ & 83 \text { (11), } 80(100), 55(22) \end{aligned}$	12, 18
5, 9-angeloylretronecine ${ }^{\text {a }}$	1797	$\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{NO}_{3}$	237 (1)	$\begin{aligned} & 219 \text { (0.5), } 193 \text { (3), } 154 \text { (16), } 138 \text { (32), } 137(25), 136 \text { (10), } \\ & 126(7), 120(2), 108(2), 94(25), 93(100), 83 \text { (8), } \\ & 80 \text { (10), } 55(13) \end{aligned}$	12, 18
6, 7-tigloylretronecine ${ }^{\text {a }}$	1816	$\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{NO}_{3}$	237 (3)	$\begin{aligned} & 219 \text { (0.5), } 154 \text { (2), } 138 \text { (3), } 137 \text { (29) } 136 \text { (15), } 124 \text { (25), } \\ & 120(5), 111(44), 106 \text { (50), } 94(20), 93(6), 83 \text { (15), } \\ & 80(100), 55(22) \end{aligned}$	12, 13
7, 9-senecionylretronecine ${ }^{\text {a }}$	1835	$\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{NO}_{3}$	237 (0)	$\begin{aligned} & 138 \text { (19), } 137 \text { (30), } 136 \text { (15), } 93 \text { (100), } 83 \text { (30), } 80 \text { (10), } \\ & 67 \text { (18), } 55 \text { (35) } \end{aligned}$	
8, 9-tigloylretronecine ${ }^{\text {a }}$	1843	$\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{NO}_{3}$	237 (0)	$\begin{aligned} & 193 \text { (5), } 154 \text { (15), } 138 \text { (20), } 137 \text { (26), } 136 \text { (13), } 126 \text { (7), } \\ & 119(5), 109 \text { (4), } 94 \text { (23), } 93 \text { (100), } 83 \text { (10), } 80(12), \\ & 55 \text { (18) } \end{aligned}$	12, 13
9, echihumiline ${ }^{\text {a }}$	2578	$\mathrm{C}_{20} \mathrm{H}_{31} \mathrm{NO}_{7}$	397 (0)	$\begin{aligned} & 297(1), 221(20), 220(100), 219(3), 138(10), 137(10), \\ & 136(58), 121(20), 120(46), 119(22), 106 \text { (5), } 94(25), \\ & 93(41), 83(50), 55(8) \end{aligned}$	
10, 7-(2-methylbutyryl)retronecine (or its isomer) ${ }^{\text {a,b }}$	1760	$\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{NO}_{3}$	239 (20)	$\begin{aligned} & 222(2), 154(20), 138(12), 137(12), 136(28), 124(37), \\ & 120(20), 111(28), 108(15), 106(28), 94(30), 93(20), \\ & 80(100), 68(10), 57(19) \end{aligned}$	
11, 9-(2-methylbutyryl)retronecine (or its isomer) ${ }^{\text {a,b }}$	1795	$\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{NO}_{3}$	239(2)	$195(5), 154$ (3), 138 (98), 137 (8), 136 (5), 120 (6), 108 (5), 94 (60$), 93$ (100), 80 (27), 67 (15), 57 (30)	
12, 7-angeloyl-9-(2-methylbutyryl)retronecine ${ }^{a, b, c}$	2155	$\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{NO}_{4}$	321 (0)	221 (35), 220 (100), 195 (5), 141 (25), 138 (3), 137 (9), 136 (90), 121 (6), 120 (53), 119 (20), 106 (8), 94 (50), 93 (70), 83 (35), 80 (15), 57 (20), 55 (35)	
13, 7-tigloyl-9-(2-methylbutyryl)retronecine ${ }^{\text {a,b,c }}$	2170	$\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{NO}_{4}$	321 (0)	221 (36), 220 (100), 195 (5), 141 (32), 138 (2), 137 (10), 136 (82), 121 (6), 120 (53), 119 (25), 106 (10), 94 (53), 93 (80), 83 (40), 80 (15), 57 (20), 55 (33)	
14, 7-angel oyl-9-(2,3-dimetylbutyryl)retronecine ${ }^{\mathrm{a}, \mathrm{b}}$	2195	$\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{NO}_{4}$	335 (0)	235 (14), 221 (15), 220 (100), 151 (3), 141 (19), 138 (2), 137 (14), 136 (78), 121 (7), 120 (53), 119 (18), 106 (13), 94 (30), 93 (53), 83 (25), 80 (12), 71 (15), 67 (7), 55 (20)	
15, uplandicine or its Isomer ${ }^{\text {b }}$	2302	$\mathrm{C}_{17} \mathrm{H}_{27} \mathrm{NO}_{7}$	357 (0)	297 (0.5), 221 (0.5), 198 (3), 181 (21), 180 (100), 136 (16), 121 (14), 120 (50), 119 (15), 106 (5), 101 (11), 94 (21), 93 (44), 80 (9), 59 (6), 43 (30)	
16, 7-angeloyl-9-(2,3-dihydroxybutyryl)retronecine ${ }^{\mathrm{a}, \mathrm{b}}$	2315	$\mathrm{C}_{17} \mathrm{H}_{2} 5 \mathrm{NO}_{6}$	339 (1)	$\begin{aligned} & 239(5), 238(5), 237(5), 221(25), 220(99), 219(15), \\ & 141(20), 138(10), 137(11), 136(100), 121(15), 120(83), \\ & 119(34), 106(10), 94(55), 93(95), 83(41), 80(20), 75(2), \\ & 57(10), 55(40), 45(10) \end{aligned}$	
17, isomer of (16), tigloyl ${ }^{\text {a,b }}$	2325	$\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{NO}_{6}$	339 (1)	$239(5), 238(5), 237(8), 221(22), 220(90), 219(20), 141(20)$, $138(10), 137(11), 136(100), 121(15), 120(80), 119(35)$, $106(10), 94(58), 93(90), 83(46), 80(20), 75(2), 57(9)$, $55(40), 45(10)$	
18, isomer of (16) or (17) ${ }^{\text {a,b }}$	2348	$\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{NO}_{6}$	339 (1)	$\begin{gathered} 239(5), 238(5), 237(8), 221(21), 220(95), 219(5), 141(25), \\ 138(9), 137(10), 136(79), 121(15), 120(79), 119(40), \\ 106(11), 94(55), 93(100), 83(48), 80(20), 75(2), 57(9), \\ 55(35), 45(10) \end{gathered}$	
19, isomer of 1, Tigloyl? ${ }^{\text {a,b }}$	2580	$\mathrm{C}_{20} \mathrm{H}_{31} \mathrm{NO}_{7}$	397 (0)	$\begin{aligned} & 382 \text { (0.1), } 297(2), 238(3), 221(21), 220(100), 219(3), \\ & 138(5), 137(6), 136(48), 121(28), 120(62), 119(23), \\ & 106(5), 94(28), 93(46), 83(30), 80(10), 59(10), 55(20), \\ & 43(18) \end{aligned}$	

${ }^{\text {a }}$ This represents a new PA for genus Echium. ${ }^{\text {b }}$ This is tentatively identified. ${ }^{\text {c }}$ Later experiments revealed that $\mathbf{1 2}$ and $\mathbf{1 3}$ are formed by decomposition of 3^{\prime}-acetylechimidine and echimidine.
is 2-methylbutanoic acid, which has been previously observed in the Boraginaceae. ${ }^{22}$ The MS of compound 11 displayed significant ions at $\mathrm{m} / \mathrm{z} \mathrm{138,94,93}$ (base peak), and 80, which are characteristic for 1,2-unsaturated necines with a monoester at C-9. ${ }^{18,} 20,21$ Based upon the mass fragmentation and biogenic considerations, alkaloids $\mathbf{1 0}$ and $\mathbf{1 1}$ were tentatively identified as 7-(2methylbutyryl)retronecine and 9-(2-methylbutyryl)retronecine, respectively.

Compound 12 showed a series of ions at $\mathrm{m} / \mathrm{z} 136,120$, 119,93 , and 80 , which are characteristic of 1,2 - unsat-
urated pyrrolizidine diesters. ${ }^{20,21}$ The base peak at m / z 220 is due to the cleavage of the weak allylic ester bond, and the ion at $\mathrm{m} / \mathrm{z} 221$ is due to the loss of the acid attached at C-7. Although the molecular ion was not detected in the mass spectrum, the fragment ion at m / z 57 indicated an α side chain ($\mathrm{C}_{4} \mathrm{H}_{9}$) in the $\mathrm{C}-9$ position. Based upon mass fragmentation and biogenic considerations, compound $\mathbf{1 2}$ was tentatively identified as 7-angeloyl-9-(2-methylbutyryl)retronecine. The same fragmentation pattern as in compound $\mathbf{1 2}$ was observed in the mass spectrum of compound $\mathbf{1 3}$, only small

Table 2. Alkaloid Composition of E. setosum and E. vulgare (Total Alkaloid 100\%)

alkaloid	$\begin{gathered} \mathrm{t}_{\mathrm{R}} \text { in } \\ \mathrm{GLC}-\mathrm{MS} \\ (\mathrm{~min}) \end{gathered}$	RI	area (\%)	
			E. setosum	E. vulgare
1, echimidine	16.36	2560	62.53	49.82
2, 3'-acetylechimidine	17.21	2640		10.20
3, retronecine	0.46	1432		trace
4, 7-angel oylretronecine	4.26	1787	1.60	3.25
5, 9-angeloylretronecine	4.48	1797	0.91	6.13
6, 7-tigloylretronecine	4.50	1815	trace	2.17
7, 9-senecioylretronecine	5.06	1835		trace
8, 9-tigloylretronecine	5.16	1843	trace	2.53
9, echihumiline	16.48	2578		trace
10,7-(2-methylbutyryl) retronecine (or its isomer)	4.21	1760		trace
11, 9-(2-methylbutyryl) retronecine (or its isomer)	4.47	1795		trace
12, 7-angeloyl-9-(2methylbutyryl)retronecine (or its isomer)	10.10	2155	2.51	3.97
13, 7-tigloyl-9-(2methylbutyryl)retronecine (or its isomer)	10.28	2170	1.37	2.89
14, 7-angeloyl-9-(2,3dimethylbutyryl)retronecine (or its isomer)	10.57	2195	trace	
15, uplandicine (or its isomer)	12.39	2302	1.83	8.30
16, 7-angeloyl-9-(2,3-dihydroxybutyryl)retronecine	12.48	2315	1.14	trace
17, isomer of 16 (tigloyl ?)	13.03	2325	3.89	trace
18, isomer of 16 or 17	13.17	2328	1.14	trace
19, echimidine isomer (tigloyl ?)	16.54	2580	22.88	20.94

differences occurred in the relative intensities of some fragment ions, indicating that $\mathbf{1 3}$ is a stereoisomer of 12. Because compound $\mathbf{1 3}$ displayed a delayed retention time in GLC-MS, it was assumed to be 7-tigloyl-9-(2methylbutyryl)retronecine.

The MS of compound $\mathbf{1 4}$ showed the characteristic fragmention pattern of 1,2 unsaturated PA diesters. The fragment ion at $\mathrm{m} / \mathrm{z} 235$ is due to the loss of the angelic acid attached to $\mathrm{C}-7$, and the base peak $\mathrm{m} / \mathrm{z} 220$, to the cleavage of the weak allylic ester bond at C-9. The fragment ion at $\mathrm{m} / \mathrm{z} 71$ indicates an α ester side chain $\left(\mathrm{C}_{5} \mathrm{H}_{11}\right)$ attached to $\mathrm{C}-9$. This compound was tentatively identified as 7-angel oyl-9-(2,3-dimethylbutyryl)retronecine.

Compound 15 exhibited a base peak at $\mathrm{m} / \mathrm{z} \mathrm{180}$, which is typical for 7-acetyl esters; the ion peak at m / z 297 is due to the loss of acetic acid attached to C-7 (M+ -60), and the fragment ion at $\mathrm{m} / \mathrm{z} 59$ is probably due to $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{O}$ from the echimidinyl moiety. The presence of $\mathrm{m} / \mathrm{z} 43$ and absence of $\mathrm{m} / \mathrm{z} 83$ and 55 provide good evidence for the presence of acetate at C-7 and absence of angelic acid or its isomers. Thus, compound $\mathbf{1 5}$ was tentatively identified as 7-acetyl-9-echimidinylretronecine (uplandicine).

Compounds 16, 17, and 18 represent an isomer series with $\mathrm{M}^{+} 339$ with the typical fragmentation pattern of 1,2-unsaturated PA diesters. The ion at $\mathrm{m} / \mathrm{z} 239$ is due to the loss of the acid attached to C-7. The strong peak at $\mathrm{m} / \mathrm{z} 220$ is due to the cleavage of the weak allylic ester bond at C-9, and the fragment at $\mathrm{m} / \mathrm{z} 57\left(\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}\right)$ is proposed to be derived from $\mathrm{m} / \mathrm{z} 75\left(\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{O}_{2}\right)$ through the loss of one molecule of $\mathrm{H}_{2} \mathrm{O}$. These isomers showed similar fragmentation patterns but differed in GLC

*(1) $\mathrm{R}=\mathrm{H}$
*(2) $\mathrm{R}=\mathrm{Acetyl}$

(4) $\mathrm{R}_{1}=\mathrm{Me} \mathrm{R} \mathrm{R}_{2}=\mathrm{H}$ (6) $\mathrm{R}_{1}=\mathrm{HR}_{2}=\mathrm{Me}$

(7)

(10)

(3)

(5) $\mathrm{R}_{1}=\mathrm{Me} \mathrm{R}_{2}=\mathrm{H}$ (8) $\mathrm{R}_{1}=\mathrm{HRR}_{2}=\mathrm{Me}$

* (9) $\mathrm{R}=$ Senecioyl
* (15) R = Acetyl
* (19) $\mathrm{R}=$ Tigloyl

(11)

(14) $\mathrm{R}_{1}=\mathrm{Me} \mathrm{R} \mathrm{R}_{2}=\mathrm{Me}$ (16) $\mathrm{R}_{1}=\mathrm{OH} \mathrm{R}_{2}=\mathrm{OH}$
*Stereochemistry at position 3' of echimidinic acid not established.
retention times and in the relative intensities of some fragment ions, for example, 93 and 136. Compound 16 was tentatively identified as 7-angeloyl-9-(2,3 dihydroxybutyryl)retronecine; compounds 17 and 18 were assumed to be isomers of compound 16.

Compound 19 is an isomeric form of echimidine, because it exhibited a fragmentation pattern similar to that of $\mathbf{1}$ and showed only small differences in relative intensities of the fragment ions $\mathrm{m} / \mathrm{z} 119,120,93$, and 83. Because angeloyl esters (such as 1) elute earlier in capillary GLC than tigloyl esters ${ }^{23}$ (compare retention times of $\mathbf{4}$ and $\mathbf{6}$ or 5 and 8), we tentatively suggest that 19 is the tigloyl isomer of echimidine. Alkaloid $\mathbf{1 9}$ does not arise by isomerization in the GC, inasmuch as such a change has not not been encountered in our numerous alkaloid analyses.

The current literature of the phytochemistry of E chium species reports various retronecine base derivatives. ${ }^{2-4}$ The alkaloid composition of E. vulgare as described in this paper differs significantly from data obtained from plants grown in Russia, in which heliosupine, asperumine, echinatine, and acetylheliosupine were identified. ${ }^{5-7}$ These PAs are of the heliotridine type, whereas we found only PAs of the retronecine type in E. vulgare (Tables 1 and 2). The presence of PAs of the retronecine type is in agreement with the frequent occurrence of retronecine rather than heliotridine bases in the genus Echium. This difference in the alkaloid pattern of E. vulgare(Russia versus Germany) could be due to the presence of ecotypes in E. vulgare, environ-
mental conditions or (less likely) a wrong identification of the Russian plant. Because heliosupine and 3'acetyl heliosupine are stereoisomers of echimidine and 3'-acetylechimidine, a wrong assignment of stereochemistry in the former publications ${ }^{5-7}$ appears more likely.

Experimental Section

General Experimental Procedures. A Carlo Erba Mega 5160 gas chromatograph equipped with a fused silica column (DB1, J\&W Scientific) was employed for PA analysis. The capillary column was directly coupled to a quadrupole mass spectrometer (Finnigan MAT 4515). EIMS were recorded at 40 eV . Condition: injector $250{ }^{\circ} \mathrm{C}$; temperature program $150-300^{\circ} \mathrm{C}, 6$ ${ }^{\circ} \mathrm{C} / \mathrm{min}$; split ratio 1:20; carrier gas He 0.5 bar. A Carlo Erba ICU 600 gas chromatograph equipped with FID and spectra physics integrator was used. DB1-30W (J \& W Scientific) fused silica capillary column $30 \mathrm{~m} \times$ $0.317-\mathrm{mm}$ film thickness; carrier gas He; detector temp. $300^{\circ} \mathrm{C}$; injector temperature $250^{\circ} \mathrm{C}$; oven temperature program; initial temperature $170^{\circ} \mathrm{C}, 5 \mathrm{~min}$ isothermal, $170-300^{\circ} \mathrm{C}, 10^{\circ} \mathrm{C} / \mathrm{min}, 300^{\circ} \mathrm{C}, 15 \mathrm{~min}$ isothermal.

Kovats indices ${ }^{24}$ were calculated with respect to a set of co-injected even-numbered hydrocarbons ($\mathrm{C}_{14}-\mathrm{C}_{28}$). Each RI was subjected to a library search by comparison with the reference RI stored in an extensive data base of the I nstitute.

Plant Material. Aerial parts of E. setosum were collected in El-Agamy, Alexandria, Egypt, in October 1992. The identity was verified by Dr. A. El-Hadidi, Faculty of Science, Cairo University. E. vulgare was collected from an area located around Mannheim, Germany, in J uly 1994, and identified unambiguously by one of the authors (M.W.). Voucher specimens are deposited at the Institut für Pharmazeutische Biologie, Heidel berg.

Extraction. Air-dried plant material (700 g of Echium setosum) and fresh plants of Echium vulgare (1000 g) were extracted twice in 0.5 N HCl by homogenization with an Ultra-turrax and left to stand for one hour each. The extract was brought to 2 N HCl and reduced with Zn dust while being stirred overnight. Excess Zn was removed by filtration. The aqueous solution was rendered alkaline with $\mathrm{NH}_{4} \mathrm{OH}$, extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated to give the total alkaloidal fractions of 140 mg (for E. setosum) and 1940 mg (for E. vulgare); total alkaloid contents were 0.021% dry wt. for E . setosum and 0.194% fresh wt. for E.vulgare PTLC [Si gel $\mathrm{F}_{254}, \mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}-$ $\mathrm{NH}_{4} \mathrm{OH}$ (25\%), 85:15:2] of the alkaloid extract from E . setosum yiel ded alkaloid $\mathbf{1}$ with $R_{f} 0.43$; from E. vulgare compound 2 ($R_{f} 0.51$) and compound $1\left(R_{f} 0.43\right)$ were isolated. The isolated alkaloids were identified by MS and ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR.

Alkaloid 1: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHZ}\right) \delta 6.06(1 \mathrm{H}$, qq, J = 1.5, $\left.7.3 \mathrm{~Hz}, \mathrm{H}-3^{\prime \prime}\right), 5.82(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-2), 5.41(1 \mathrm{H}$, $\mathrm{m}, \mathrm{H}-7), 4.88(1 \mathrm{H}, \mathrm{dm}, \mathrm{J}=13 \mathrm{~Hz}, \mathrm{H}-9 \mathrm{~d}), 4.62(1 \mathrm{H}, \mathrm{dm}$, $\mathrm{J}=13 \mathrm{~Hz}, \mathrm{H}-9 \mathrm{u}), 4.39(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8), 4.14(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=$ $\left.6.3 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right), 3.94(1 \mathrm{H}, \mathrm{dm}, \mathrm{J}=15.6 \mathrm{~Hz}, \mathrm{H}-3 \mathrm{~d}), 3.36$ (1H, m, H-3u), 3.33 (1H, m, H-5d), 2.65 (1H, m, H-5u), 2.08 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-6$), $1.93\left(3 \mathrm{H}\right.$, quin, J $\left.=1.5 \mathrm{~Hz}, \mathrm{H}-4^{\prime \prime}\right)$, 1.77 (3H, dq, J = 1.5, $\left.7.3 \mathrm{~Hz}, \mathrm{H}-5^{\prime \prime}\right)$, $1.26\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-7^{\prime}\right)$, $1.22\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.3 \mathrm{HZ}, \mathrm{H}-4^{\prime}\right), 1.19\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-\mathrm{7}^{\prime}\right) ;{ }^{13} \mathrm{C}$

NMR ($\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 174.23\left(\mathrm{~s}, \mathrm{C}-1^{\prime}\right), 166.92(\mathrm{~s}$, C-1"), 139.27 (d, C-3"), 132.89 (s, C-1), 128.59 (d, C-2), 127.42 (s, C-2"), 83.06 (s, C-2'), 75.98 (d, C-8), 73.66 (d, C-7), 73.61 (s, C-5'), 69.74 (d, C-3'), 62.69 (t, C-3), 62.48 (t, C-9), 53.73 (t, C-5), 34.51 (t, C-6), 25.96 (q, C-6'), 24.86 (q, C-7'), 18.51 ($q, C-4^{\prime}$), 15.74 (q, C-4").

Alkaloid 2: ${ }^{1 \mathrm{H}} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 6.10(1 \mathrm{H}$, qq, J = 1.5, $\left.7.3 \mathrm{HZ}, \mathrm{H}-3^{\prime \prime}\right), 5.84(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-2), 5.45(1 \mathrm{H}$, $\mathrm{m}, \mathrm{H}-7), 5.44\left(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.3 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right), 4.76(1 \mathrm{H}, \mathrm{dm}, \mathrm{J}$ $=13.3 \mathrm{~Hz}, \mathrm{H}-9 \mathrm{~d}), 4.62(1 \mathrm{H}, \mathrm{dm}, \mathrm{J}=13.3 \mathrm{~Hz}, \mathrm{H}-9 \mathrm{u})$, $4.42(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8), 4.00(1 \mathrm{H}, \mathrm{dm}, \mathrm{J}=15.5, \mathrm{H}-3 \mathrm{~d}), 3.41$ (1H, m, H-3u), 3.41 (1H, m, H-5d), 2.71 (1H, m, H-5u), $2.15(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-6), 1.96\left(3 \mathrm{H}, \mathrm{dq}, \mathrm{J}=1.5,7.3 \mathrm{~Hz}, \mathrm{H}-5^{\prime \prime}\right)$, $1.95\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-3^{\prime}-\mathrm{OAc}\right), 1.80\left(3 \mathrm{H}\right.$, quin, J $\left.=1.5 \mathrm{~Hz}, \mathrm{H}-4^{\prime \prime}\right)$, $1.39\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-7^{\prime}\right), 1.37\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.3, \mathrm{H}-4^{\prime}\right), 1.17(3 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{H}-6^{\prime}\right) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 173.37$ (s, C-1'), 169.47 (s, C-1"), 166.75 ($s, 3^{\prime}-\mathrm{OAc}: \mathrm{C}=0$), 139.57 (d, C-3"), 132.76 (s, C-1), 128.67 (d, C-2), 127.32 (s, C-2"), 82.87 (s, C-2'), 75.83 (d, C-8), 73.46 (d, C-7), 73.09 (s, C-5'), 72.56 (d, C-3'), 62.57 (t, C-2), 62.48 (t, C-9), 53.81 ($\mathrm{t}, \mathrm{C}-5$), 34.46 (t, C-6), 26.59 ($\left.q, \mathrm{C}^{\prime} 6^{\prime}\right), 24.61$ ($\mathrm{q}, \mathrm{C}-7^{\prime}$), 20.96 ($\left.q, 3^{\prime}-O A c: ~ M e\right), ~ 15.82$ ($q, C-4^{\prime \prime}$), 15.42 ($q, C-4^{\prime}$).

Acknowledgment. NMR spectra were recorded by Dr. G. Schilling University Heidelberg, and Prof. Dr. L. Ernst, Technical University, Braunschweig. We thank Dr. A. El-Hadidi for the identification of Echium setosum.

References and Notes

(1) Bull, L. B.; Culvenor, C. C. J; Dick, A. T. The Pyrrolizidine Alkaloids; North-Holland Publishing Co.: Amsterdam, 1968.
(2) Robins, D. J. Fortschr. Chem. Org. Naturst. 1982, 41, 115-203.
(3) Mattocks, A. R. Chemistry and Toxicology of Pyrrolizidine Alkaloids; Academic Press: London , 1986.
(4) Taekholm, V. Student's F lora of Egypt, 2nd ed.; Cairo University, Cooperative Printing: Beirut, 1974.
(5) Man'ko, I. V. Ukrain. Khim. Zhur. 1959, 25, 627-630; Chem. Abstr. 1960, 54, 12494c.
(6) Karimov, A.; Telezhenetskaya, M. V.; Lutfullin, K. L.; Yunusov, S. Y. Khim. Prir. Soedin. 1975, 11, 43-48.
(7) Pedersen, E. Arch. Pharm. Chem, Sci. Ed. 1975, 3, 55-64.
(8) Culvenor, C. C. J .; Woods, W. G. Aust. J . Chem. 1965, 18, 16521662.
(9) Culvenor, C. C. J .; Heffernan, M. L.; Woods, W. G. Aust. J . Chem. 1965, 18, 1605-1611.
(10) J ones, A. J.; Culvenor, C. C. J ; Smith, L. W. Aust. J . Chem. 1982, 33, 1173-1184.
(11) Roeder, E.; Liu, K.; Bourauel, T. Phytochemistry 1991, 30, 31073110.
(12) Witte, L.; Rubiolo, P.; Bicchi,C.; Hartmann, T. Phytochemistry 1993, 32, 187-196.
(13) Stelljes, M. E.; Kelley, R. B.; Molyneux, R. J.; Seiber, J. N. J Nat. Prod. 1991, 54, 759-773.
(14) Culvenor, C. C. J.; Edgar, J. A.; Smith, L. W. J. Agric. Food Chem. 1981, 29, 958-960.
(15) Bicchi, C.; Caniato, R.; Tabacchi, R.; Tsoupras, G. J. Nat. Prod. 1989, 52, 32-41.
(16) von Borstel, K.; Witte, L.; Hartmann, T. Phytochemistry 1989, 28, 1635-1639.
(17) Witte, L.; Ernst, L.; Adam, H.; Hartmann, T. Phytochemistry 1992, 31, 559-565.
(18) Roeder, E.; Sarg, T.; El-Dahmy, S.; Abdel Ghani, A. Fitoterapia 1992, 63, 405-408.
(19) Sarg, T.; El-Dahmy, S.; Abdel Aziz, E.; Abdel Ghani, A.; Roeder, E. Fitoterapia 1992, 63, 466-468.
(20) Pedersen, E.; Larsen, L. Org. Mass. Spectrom. 1970, 4, 249261.
(21) Neuner-J ehle, N.; Nesvadba, H.; Spiteller, G. Mh. Chem. 1965, 96, 321-338.
(22) Kelley, R. B.; Seiber, J. N. Phytochemistry 1992, 31, 2369-2387.
(23) Wink, M.; Schiebel, H. M ,; Witte, L.; Hartmann, T. Planta Med. 1982, 44, 15-20.
(24) Kovats, E. Helv. Chem. Acta 1958, 41, 1915-1932.

NP9600661

[^0]: * To whom correspondence should be addressed. Fax: 06221544884. E-mail: F01@ix.urz.uni-heidel berg.de.
 ${ }^{\otimes}$ Abstract published in Advance ACS Abstracts, March 1, 1996.

